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Origins: Monge Problem (1781)



Optimal transport (Monge formulation)

• Probability measures µs and µt on and a cost function c : ⌦s ⇥ ⌦t ! R+.

• The Monge formulation [Monge, 1781] aim at finding a mapping T : ⌦s ! ⌦t

inf
T#µs=µt

Z

⌦s

c(x, T (x))µs(x)dx (1)



Non-existence / Non-uniqueness

Solving for this push-forward operator is a non-convex optimization problem,

• for which existence is not guaranteed,

• nor unicity

Note: [Brenier, 1991] proved existence and unicity of the Monge map for

c(x, y) = kx� yk2 and distributions with densities (i.e. continuous).
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Optimal transport (Kantorovich formulation)

• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic

coupling � 2 P(⌦s ⇥ ⌦t) between ⌦s and ⌦t:

�0 = argmin
�

Z

⌦s⇥⌦t

c(x,y)�(x,y)dxdy, (2)

s.t. � 2 P =

⇢
� � 0,

Z

⌦t

�(x,y)dy = µs,

Z

⌦s

�(x,y)dx = µt

�

• � is a joint probability measure with marginals µs and µt.

• Linear Program that always have a solution.



A first simple example



Matching words embedding

• Words are embedded in a high-dimensional space with neural networks

• Matching two documents is an OT problem, with the cost being the l2 distance in

the embedded space



Wasserstein distance



Wasserstein distance

Wasserstein distance

W p
p (µs, µt) = min

�2P

Z

⌦s⇥⌦t

c(x,y)�(x,y)dxdy = E
(x,y)⇠�

[c(x,y)] (3)

where c(x,y) = kx� ykp

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Do not need the distribution to have overlapping support.

• Works for continuous and discrete distributions (histograms, empirical).



Discrete distributions: Empirical vs Histogram

Discrete measure: µ =
nX

i=1

µi�xi , xi 2 ⌦,
nX

i=1

µi = 1

Lagrangian (point clouds)

• Constant weight: µi = 1
n

• Quotient space: ⌦n, ⌃n

Eulerian (histograms)

• Fixed positions xi e.g. grid

• Convex polytope ⌃n (simplex):�
(µi)i � 0;

P
i µi = 1

 



Wasserstein space

The space of probability distribution equipped with the Wasserstein metric (Pp(X),

W 2
2 (X)) defines a geodesic space with a Riemannian structure [Santambrogio, 2014].

• Geodesics are shortest curves on Pp(X) that link two distributions

Illustration by S. Kolhouri



Wasserstein barycenter

Barycenters [Agueh and Carlier, 2011]

µ̄ = argmin
µ

nX

i

�iW
p
p (µ

i, µ)

• �i > 0 and
Pn

i �i = 1.

• Uniform barycenter has �i = 1
n , 8i.

• Interpolation with n=2 and � = [1� t, t] with 0  t  1 [McCann, 1997].

• Regularized barycenters using Bregman projections [Benamou et al., 2015].

• The cost and regularization impacts the interpolation trajectory.



3D Wasserstein barycenter

Shape interpolation [Solomon et al., 2015]



Principal Geodesics Analysis

Geodesic PCA in the Wasserstein space [Bigot et al., 2017]

• Generalization of Principal Component Analysis to the Wassertsein manifold.

• Regularized OT [Seguy and Cuturi, 2015].

• Approximation using Wasserstein embedding [Courty et al., 2017].

• Also note recent Wasserstein Dictionary Learning approaches

[Schmitz et al., 2017].



Computational aspects



Special case: 1D distribution

We consider the case where c(x, y) is a strictly convex and increasing function of

|x� y|.

• if x1 < x2 and y1 < y2, it is easy to check that

c(x1, y1) + c(x2, y2) < c(x1, y2) + c(x2, y1)

• As such, any optimal transport plan respects the ordering of the elements, and

the solution is given by the monotone rearrangement of µ1 onto µ2

This gives very simple algorithm to compute the transport in O(N logN), by sorting

both xi and yi and summing the absolute values of di↵erences.



Special case: 1D distribution

Consider the cumulative distribution functions Fµ associated to the µ distribution.

• It is defined such that Fµ(t) = µ(�1, t].

We will note F�1
µ (q), q 2 [0, 1] the corresponding generalized inverse distribution (or

quantile function)

• defined as F�1
µ (q) = inf{x 2 R : Fµ(x) � q}.

Then,

W1(µs, µt) =

Z 1

0

c(F�1
µs (q), F�1

µt (q))dq



Optimal transport with discrete distributions

OT Linear Program
�0 = argmin

�2P

(
h�,CiF =

X

i,j

�i,jci,j

)

where C is a cost matrix with ci,j = c(xs
i ,x

t
j) and the marginals constraints are

P =
n
� 2 (R+)ns⇥nt | �1nt = µs,�

T1ns = µt

o

Solved with Network Flow solver of complexity O(n3 log(n)).
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Optimal transport with discrete distributions

• P is the Birkho↵ polytope

• No unique solution in some cases, numerical instabilities

• Not di↵erentiable !



Regularized optimal transport

��
0 = argmin

�2P
h�,CiF + �⌦(�), (4)

Regularization term ⌦(�)

• Entropic regularization [Cuturi, 2013].

• Group Lasso [Courty et al., 2016].

• KL, Itakura Saito, �-divergences,

[Dessein et al., 2016].

Why regularize?

• Smooth the “distance” estimation:

W�(µs, µt) =
⌦
��

0 ,C
↵
F

• Encode prior knowledge on the data.

• Better posed problem (convex, stability).

• Fast algorithms to solve the OT problem.



Entropic regularized optimal transport

Entropic regularization [Cuturi, 2013]

⌦(�) =
X

i,j

�(i, j)(log �(i, j)� 1)

• Regularization with the negative entropy of �.



Entropic regularized optimal transport

Entropic regularization [Cuturi, 2013]

⌦(�) =
X

i,j

�(i, j)(log �(i, j)� 1)

• Regularization with the negative entropy of �.



Resolving the entropy regularized problem

Entropy-regularized transport

The solution of entropy regularized optimal transport problem is of the form

��
0 = diag(u) exp(�C/�)diag(v)

Why ? Consider the Lagrangian of the optimization problem:

L(�,↵,�) =
X

ij

�ijCij + ��ij(log �ij � 1) + ↵T(�1nt � µs) + �T(�T1ns � µt)

@L(�,↵,�)/@�ij = Cij + � log �ij + ↵i + �j

@L(�,↵,�)/@�ij = 0 =) �ij = exp(
↵i

�
) exp(�Cij

�
) exp(

�j

�
)

• Through the Sinkhorn theorem diag(u) and diag(v) exist and are unique.

• Can be solved by the Sinkhorn-Knopp algorithm (implementation in parallel,

GPU).

Not now !



Dual formulation of optimal transport

• Yet, solving for � is impractical to intractable when dealing with high-dimensional

distributions

• especially if one is interested in computing the gradients of the Wasserstein

distance

• Other solving strategies should be taken into consideration

• Recalling that any LP problem can be turnt into its dual form:

primal form : dual form :

minimize z = cTx,

so that Ax = b

and x � 0

maximize z̃ = bTy,

so that ATy  c

• Weak duality: z̃ is a lower bound of z, Strong duality z̃ = z

• Strong duality is usually achieved via Farkas Theorem



Duality: general case with continuous distributions

We now introduce two functions scalar functions � and  (also known as Kantorovich

potentials) that will act as our dual variables. Then, we consider the optimal problem

is equivalent (by the Rockafellar-Fenchel theorem) to:

max
�, 

⇢Z
�dµs +

Z
 dµt | �(x) +  (y)  c(x, y)

�
(6)

Note that the marginal constraint has been turned into an equality constraint on �

and  

Introducing the c-transform (or c-conjugate) Hc which is in spirit close to a Legendre

transform:

�c def
= Hc(�) = inf

x
c(x, y)� �(x) (7)

then the following problem is equivalent:

max
�

⇢Z
�dµs +

Z
�cdµt | �(x) + �c(y)  c(x, y)

�
(8)



Case c(x, y) = |x � y| (a.k.a W 1
1 )

Whenever c(x, y) = |x� y|, then:

• existence of a solution but not unique

• For any � 2 Lip1 (set of 1-Lipschitz functions), we have �c(x) = ��(x)

The optimal transport problem then amounts to find � 2 Lip1 as

sup
�2Lip1

Z
�d(µs � µt) = sup

�2Lip1
E

x⇠µs
[�(x)]� E

y⇠µt
[�(y)] (9)

• also known as Kantorovich-Rubinstein duality

• � can be learnt as a neural network constrained to the set Lip1, see next section

on GAN



Dual: empirical version

In the case when we have access to discrete distributions, µs (resp. µt) is

characterized by a set of locations Xs and masses a 2 Rns
(resp. Xt and b 2 Rnt

)

Discrete dual version of OT

W (µs, µt) = max
↵2Rns

,�2Rnt
,↵i+�jc(Xs

i ,X
t
j )
↵Ta+ �Tb (11)

i.e. find a scalar values per sample



Regularized case

Adding regularization to the original problem turns the dual computation to an

unconstrained problem !

In the case of entropy regularization, i.e.

W�(µs, µt) = min�2P h�,CiF + �⌦(�) with ⌦(�) =
P

i,j �(i, j) log �(i, j),

the dual now reads (in a discrete settings, measures are collections of Diracs):

max
↵,�

↵Tµs + �Tµt �
1
�
exp(

↵
�
)TK exp(

�
�
) (12)

with K = exp(�C
� ).

Remark: The Sinkhorn algorithm is a gradient ascent on the dual variables !



Regularized case

With this unconstrained problem, incremental gradients techniques (SGD, SAG) can be

used to solve the problem !

• [Genevay et al., 2016] used the semi-dual formulation (one variable is removed by

replacing it with its c-transform) int the first stochastic version of Optimal

Transport problem

• [Seguy et al., 2017] used the full dual version with entropic and L2

regularizations, together with neural networks to parameterize the problem.



1. What is optimal transport ? 
2. How can it be used in data science ?



Optimal transport for machine learning

Short history of OT for ML

• Recently introduced to ML (well known in image processing since 2000s).

• Computationnal OT allow numerous applications (regularization).

• Deep learning boost (numerical optimization and GAN).



Learning from histograms



Learning from histograms

Data as histograms

• Fixed bin positions xi e.g. grid, simplex � =
�
(µi)i � 0;

P
i µi = 1

 

• A lot of datasets comes under the form of histograms.

• Images are photo counts (black and white), text as word counts.

• Natural divergence is Kullback–Leibler.

• Not all data can be seen as histograms (positivity+constant mass)!



Dictionary learning on histograms

DL with Wasserstein distance [Sandler and Lindenbaum, 2011]

min
D,H

X

i

WC(vi,Dhi)

• NMF: columns of D and H are on the simplex.

• Metric C can encode spatial relations btewwen the bins of the histograms.

• Ground metric learning [Zen et al., 2014].

• Fast DL with regularized OT [Rolet et al., 2016].
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Multi-label learning with Wasserstein Loss

Learning with a Wasserstein Loss [Frogner et al., 2015]

min
f

NX

k=1

W 1
1 (f(xi), li)

• Empirical loss minimization with Wasserstein loss.

• Multi-label prediction (labels l seen as histograms, f output softmax).

• Cost between labels can encode semantic similarity between classes.

• Good performances in image tagging.



Learning from distributions



Empirical distributions A.K.A datasets

µ =
nX

i=1

µi�xi , xi 2 ⌦,
nX

i=1

µi = 1

Empirical distribution

• Two realizations never overlap.

• Training base of all machine learning

approaches.

• How to measure discrepancy?

• Maximum Mean Discrepancy (`2 after

convolution).

• Wasserstein distance.



Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]

min
G

max
D

Ex⇠µd [logD(x)] + Ez⇠N (0,I)[log(1�D(G(z)))]

• Learn a generative model G that outputs realistic samples from data µd.

• Learn a classifier D to discriminate between the generated and true samples.

• Make those models compete (Nash equilibrium [Zhao et al., 2016]).

• Generator space has semantic meaning [Radford et al., 2015].

• But extremely hard to train (vanishing gradients).



Wasserstein Generative Adversarial Networks (WGAN)

Wasserstein GAN [Arjovsky et al., 2017]

min
G

W 1
1 (G(z), µd), s.t. z ⇠ N (0, I) (3)

• Minimizes the Wasserstein distance between the data and the generated data.

• No vanishing gradients ! Far better convergence in practice.

• Wasserstein in the dual (separable w.r.t. the samples).

min
G

sup
�2Lip1

Ex⇠µd [�(x)]� Ez⇠N (0,I)[�(G(z))]

• � is a neural network that acts as an actor critic



Wasserstein Discriminant Analysis (WDA)

max
P2S

P
c,c0>c W�(PX

c,PX
c0)

P
c W�(PXc,PXc)

(4)
• X

c are samples from class c.

• P is an orthogonal projection;

• Converges to Fisher Discriminant when � ! 1.

• Non parametric method that allows nonlinear discrimination.

• Problem solved with gradient ascent in the Stiefel manifold S.

• Gradient computed using automatic di↵erentiation of Sinkhorn algorithm.
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Finding the (Monge) mapping



Mapping with optimal transport

Mapping estimation

• Mapping do not exist in general between empirical distributions.

• Barycentric mapping [Ferradans et al., 2014].

• Smooth mapping estimation [Perrot et al., 2016, Seguy et al., 2017].

Why map ?

• Sensible displacement to align distributions.

• Color adaptation in image [Ferradans et al., 2014].

• Domain adaptation and transfer learning [Courty et al., 2016].



Transporting the discrete samples

Barycentric mapping [Ferradans et al., 2014]

bT�0
(xs

i ) = argmin
x

X

j

�0(i, j)c(x,x
t
j). (1)

• The mass of each source sample is spread onto the target samples (line of �0).

• The mapping is the barycenter of the target samples weighted by �0

• Closed form solution for the quadratic loss.

• Limited to the samples in the distribution (no out of sample).

• Trick: learn OT on few samples and apply displacement to the nearest point.
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Large scale optimal transport and mapping estimation

Large scale mapping estimation [Seguy et al., 2017]

• 2-step procedure:

1 Stochastic estimation of regularized �̂.

2 Stochastic estimation of f with a neural

• OT solved with Stochastic Gradient Ascent in the dual.

• Convergence to the true OT and mapping for small

regularization.



Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context

• Classification problem with data coming from di↵erent sources (domains).

• Distributions are di↵erent but related.



Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

• Labels only available in the source domain, and classification is conducted in the

target domain.

• Classifier trained on the source domain data performs badly in the target domain



OT for domain adaptation : Step 1Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Step 1 : Estimate optimal transport between distributions.

• Choose the ground metric (squared euclidean in our experiments).

• Using regularization allows

• Large scale and regular OT with entropic regularization [Cuturi, 2013].

• Class labels in the transport with group lasso [Courty et al., 2016].

• E�cient optimization based on Bregman projections [Benamou et al., 2015] and

• Majoration minimization for non-convex group lasso.

• Generalized Conditionnal gradient for general regularization (cvx. lasso,

Laplacian).



OT for domain adaptation : Steps 2 & 3Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Step 2 : Transport the training samples onto the target distribution.

• The mass of each source sample is spread onto the target samples (line of �0).

• Transport using barycentric mapping [Ferradans et al., 2014].

• The mapping can be estimated for out of sample prediction

[Perrot et al., 2016, Seguy et al., 2017].

Step 3 : Learn a classifier on the transported training samples

• Transported sample keep their labels.

• Classic ML problem when samples are well transported.



Domain adaptation with Wasserstein distance

Domain adaptation for deep learning [Shen et al., 2018]

• Modern DA aim at aligning source and target in the deep representation :

DANN [Ganin et al., 2016], MMD [Tzeng et al., 2014], CORAL [Sun and Saenko, 2016].

• Wasserstein distance used as objective for the adaptation [Shen et al., 2018].



Joint Distribution Optimal Transport for DA

Learning with JDOT [Courty et al., 2017]

min
f

(
W1(P̂s, P̂t

f
) = inf

�2⇧

X

ij

D(xs
i , y

s
i ;x

t
j , f(x

t
j))�ij

)
(5)

• P̂t
f
= 1

Nt

PNt
i=1 �xt

i,fx
t
i
is the proxy joint feature/label distribution.

• ⇧ is the transport polytope, P̂s the empirical source distribution.

• D(xs
i , y

s
i ;x

t
j , f(x

t
j)) = ↵kxs

i � x
t
jk2 + L(ys

i , f(x
t
j)) with ↵ > 0.

• We search for the predictor f that better align the joint distributions.

• JDOT can be seen as minimizing a generalization bound.

Optimizing JDOT

• Can be solved by block coordinate descent (f,�) [Courty et al., 2017].

• Solving with fixed f is classical OT.

• Solving with fixed � is weighted empirical loss minimization.



JDOT for large scale deep learning

g

g

+

+

DeepJDOT [Damodaran et al., 2018]

• Learn simultaneously the embedding g and the classifier f .

• JDOT performed in the joint embedding/label space.

• Use minibatch to estimate OT and update g, f at each iterations.

• Scales to large datasets and estimate a representation for both domains.

• TSNE projections of embeddings (MNIST!MNIST-M).
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3. Conclusion



Conclusion

• Codes available !

• A powerful tool, well theoretically grounded, for manipulating distributions in 
ML 

• Despite its initial computational complexity, a lot of applications, even in large 
scale/deep learning settings 

• Uncovered aspects (in this presentation): unbalanced OT, Gromov-
Wasserstein (working with structured data), and many more !



POT (PYTHON OPTIMAL TRANSPORT TOOLBOX)
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